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Project Overview

« Goal and Objective

To develop and evaluate high temperature embedded/integrated sensor
systems (HITEISs) for applications in reactor and fuel cycle systems.

« Participants (2019)
Xiaoning Jiang, PIl, North Carolina State University
Mohamed Bourham, Co-PI, North Carolina State University
Mo-Yuen Chow, Co-Pl, North Carolina State University
Leigh Winfrey, Co-PIl, Pennsylvania State University

« Schedule
Task 1: HITEIS design and development (Year 1 & 2)
Task 2: HITEIS Integration and characterization (Year 2 & 3)

Task 3: Development of embedded sensors and laser ultrasound
(Year 2 & 3)
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Accomplishments

Accomplishment 1: HT vibration sensor and characterization

Purpose:

» To develop and characterize a HT vibration sensor for nuclear power plant application

Methods:

A. Sensor design and fabrication
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AIN based shear-type accelerometer

B. Characterization

1. HT (~1000 °C) test 2. Radiation (9 kGy) test

HT furnace , HT accelerometer

(GSL1100X, MTI)
Function generator
(AFG3101, Tektronix)

%= Charge amplifier
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Power amplifier

600-1000°C || Vibration shaker
(2706, B&K) OSCIIloscope

conditions s (ES020, KCF Tech.) (5071048, Agilent)

in NCSU

Sensor validation under HT and radiation fluence
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Accomplishments

Results:
A. Sensitivity B. HT endurance
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Conclusions:

* Developed a vibration sensor performing under HT condition (~ 1000 °C)
 Radiation effect (9 kGy (kilogray)) of the sensor is currently being tested.
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Accomplishments

Accomplishment 2: HT Vibration Sensor Development and Characterization

Purpose:
» To develop the wireless communication system for the HITEIS
Methods:

A. Data communication system B. System validation

Remote
data transfer
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Data acquisition
and analysis

Sensor data from the HT vibration sensor (~ 600 °C)
Remote data transmission

Software/hardware development

5 energy.gov/ne



Accomplishments

Results:
A. Wireless data acquisition/storage

98

. Reliability

Temp =25C, Freq =100Hz 3 Temp =231C, Freq =100Hz 1 1 1 i
ety e e * 100Hz, 250-1500mV vibration - Wireless sensor data post processing
25C100Hz 250mVpp. 18}  fewo03sweP-aon 8359 ———231C100Hz 250m Vpp
_ 25C100Hz S00mVpp 231C100Hz S00mVpp 45
2 0.025 25C100Hz 7S0mVpp & 231C100Hz 7S0mVpp
2o P i =
2 25C100Hz 1000mVpp 2 231C100Hz 1000mVpp
; 25C100Hz 1250mVpp £ 231C100Hz 1250mVpp.
£ 25C100Hz 1500mVpp E 14 <0.704556,P=0013812) 231C100Hz 1500mVpp —
g o 1409.755850.9-0.020408)
2 2
E " ooy 40 -
]
5 H es.p-00108
Zo001s Ea E
= £
£ L S
: prionanesrp.vionas i, — 35%
z geomsocispo coss30) £ Q
E IR || 3 )
Bt T RT 200 °C
L, N 2, -0 c .
i ut Wireless comm
o rasadtaditboadt AU g 0 i (o]
975 98 985 99 995 100 1005 101 1015 102 1025 % 95 00 105 10 1S 120 o
Frequency (Hz) Frequency (Hz) d ata
n 5 -
w’ : 200 °C ,’/
a0 4 400°C ﬁ/
! Temp =600C, Freq =100Hz = ¢
x10?  Temp =400C, Freq -100iz g oy b S 200 £ o+ 600 j'/
= —r—m ——— 600C100Hz 250m Vpp o % 30 -
o 0.03 600C100Hz $00mVpp 2
. 400C100Hz 500mVpp 2 600C100Hz 750m V) 2 ’
216 40CIDOEE 730 Vpp = 600100z 1000mVpy m 2
: —— 400C100H 1000mVpp = Shecionts | ook Vop 2 L
£ 400C100Hz 1250mVpp F 0.025 eciosmtsionviy : = 20 I's
H 400C100Hz 1500mVpp g 15 L 5 L .
il e g Q 2 -
: bt 2 : .~ Oscilloscope
g. g o v z
H F 10
;m gaois -~ d t
£ £ - ‘ ala
=* \ = 10 o
5 H
g6 {-.810791,P-0005852) £ 001 0 1 2 3 4
5 i [li+dbe 767000 p-0. 000458 ; = 18.P-0008821) Acceleration (g)
f E 50 1a8)
& 400 °C oo 600 °C 3
% 519097,9-0002214) -09.948120,9.0002250)
! ™ w 3 1 2 3
0] o 0
9 95 100 105 10 1S 120 135 o 1" 105 1

= Acceleration (g)
Change in the peak value of the frequency spectrum  Rgliable agreement with the directly connected
by changing the vibrational level of the sensor oscilloscope data

Conclusions:

* Demonstrated a wireless communication system for HITEIS
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Accomplishments

Accomplishment 3: Stress Measuring Technique and Temperature
Compensation Method

Purpose:
« To investigate a wave-based stress sensing method

Methods:

A. Sensor development B. Characterization
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Accomplishments

Results:
A. Sensitivity
Stress (MPa)
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Conclusions:

B. Temperature compensation
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* Demonstrated a stress sensing method using 1-3 composite piezo sensors
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Accomplishments

Accomplishment 4: Laser stress sensor and characterization

Purpose:

 To develop a laser assisted stress sensor and to characterize it

Methods:

A. Sensor development
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energy energy deformation waves
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Laser generated ultrasound for the stress sensing

Candle-soot nanoparticle (CSNP) composite for the
intensified photoacoustic conversion

B. Characterization
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laser generated ultrasound and the

piezoelectric sensor
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Sensor response (mV)

Accomplishments

Results:
A. Efficacy of the CSNP B. Angular dependency of the  C. Sensitivity
laser aenerated ultrasound
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Conclusions:

* Developed a stress sensing method using the laser generated ultrasound
» Carbon-soot nanoparticle aids to intensifies the photoacoustic conversion
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Accomplishments

Accomplishment 5: Liquid level sensor and characterization

Purpose:
« To develop a nonintrusive liquid level sensor using a laser power
Methods:
A. Sensor development B. Characterization
Metta',“c : a Liquid vessel
Gaseous
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the liquid level sensor due to the leaky guided wave Liquid level measurement,
HT sensor embedding method on a test structure varying the liquid temperature
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Accomplishments

Results:
A. Sensitivity at RT

B. Sensor regression model for the varying temperature
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Conclusions:

* Developed a laser assisted liquid level sensor with the HT sensors
» Sensor calibration in elevated temperature conditions (~ 200 °C)
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Accomplishments

Accomplishment 6: Laser Generated Lamb Wave for NDT sensor

Purpose:

» To develop a photoacoustic transducer for the narrowband Lamb wave generation

Methods:

A. Transducer development
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B. Transducer validation
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Accomplishments

Results:
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Conclusions:

* Developed a laser ultrasound transducer to capture the narrowband Lamb wave signal
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Accomplishments

Publications:
A. Journal papers (5)

[1]1 T. Kim, J. Kim, and X. Jiang, “AIN Ultrasound Sensor for Photoacoustic Lamb Wave Detection in a High-Temperature Environment,”
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 65, No. 8, pp. 1444-1451, 2018.

[2] J. Kim, H. Kim, W. Y. Chang, W. Huang, X. Jiang, and P. A. Dayton, “Candle-Soot Carbon Nanoparticles in Photoacoustics:
Advantages and Challenges for Laser Ultrasound Transmitters,” IEEE Nanotechnology Magazine, Vol. 13, No. 3, pp. 13-28, 2019.

[38] T. Kim, W. Y. Chang, H. Kim, and X. Jiang, “Narrow Band Photoacoustic Lamb Wave Generation for Nondestructive Testing Using
Candle Soot Nanoparticle Patches,” Applied Physics Letters, Vol. 115, No. 10, 102902, 2019.

[4] H. Kim, T. Kim, D. Morrow, X. Jiang, “Stress Measurement of a Pressurized Vessel Using Ultrasonic Subsurface Longitudinal Wave
with 1-3 Composite Transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Controls, in press, 2019.

[5] H. Kim, W. Y. Chang, T. Kim, and X. Jiang, “Stress Sensing Method via Laser-Generated Ultrasound Wave Using Carbon Soot
Nanoparticle Composite,” IEEE Sensors Journal, submitted for publication, 2019.

B. Conference papers (3)

[11 H. W. Kim, W. Y. Chang, T. Kim, S. Huang, and X. Jiang, X. “Stress Measurement of a Pressurized Vessel Using Candle Soot
Nanocomposite Based Photoacoustic Excitation,” SPIE Nondestructive Characterization and Monitoring of Advanced Materials,
Aerospace, Civil Infrastructure, and Transportation XlIl, Denver, CO, Vol. 10971, pp. 109710G, 2019.

[2] H. W. Kim, T. Kim, D. Morrow, X. Jiang, “Stress Sensing Technique via Subsurface Longitudinal Wave with Composite Trasducer,”
The 11th Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies, Orlando, FL, 2019.

[3] B. Balagopal, S. Kerrigan, H. Kim, M. Y. Chow, M. Bourham, X. Jiang “A Smart Sensor Prototype for Vibration Sensing in Nuclear
Power Plants,” The 28th International Symposium on Industrial Electronics (IEEE-ISIE), Vancouver, Canada, 2019.
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Technology Impact

Advances the state of the art for nuclear application

Nonintrusive monitoring of structural integrity under harsh environmental
conditions such as HT and radiation

Supports the DOE-NE research mission

In-service monitoring data of the nuclear structures, guaranteeing the
sustainable nuclear energy usage with the reliable lifetime prediction.

Impacts the nuclear industry

Nonintrusive HITEIS and wireless communication system enable more
frequent and thorough inspection while excluding human operator from
the nuclear environments.

Will be commercialized

Some inventions (e.g., laser assisted liquid level sensor), achieved from
the project, will be disclosed through technical patents.
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Conclusion

1. AHT vibration sensor was developed and characterized under 1000 °C.
The radiation effect of the sensor is, currently, being tested using Cobalt
source.

2. A wireless data transmitting system was designed and validated by
using the HT vibration sensor placed in a hot furnace.

3. Ultrasound based stress sensors were investigated using the
composite piezoelectric sensor and the photoacoustic transducer,
respectively.

4. Nonintrusive HT liquid level sensor was studied using the laser
generated ultrasound.

5. Narrowband Lamb wave generator was investigated using the
candlesoot nanoparticle composites.

6. In the future works, the developed HITEIS will be embedded in a
miniaturized reactor mock-up for more tests. In addition, more laser
ultrasound sensors will be studied.

e Contact: xjangb@ncsu.edu

energy.gov/ne







